Sparse Bayesian Non-linear Regression for Multiple Onsets Estimation in Non-invasive Cardiac Electrophysiology
نویسندگان
چکیده
In the scope of modelling cardiac electrophysiology (EP) for understanding pathologies and predicting the response to therapies, patient-specific model parameters need to be estimated. Although personalisation from non-invasive data (body surface potential mapping, BSPM) has been investigated on simple cases mostly with a single pacing site, there is a need for a method able to handle more complex situations such as sinus rhythm with several onsets. In the scope of estimating cardiac activation maps, we propose a sparse Bayesian kernel-based regression (relevance vector machine, RVM) from a large patient-specific simulated database. RVM additionally provides a confidence on the result and an automatic selection of relevant features. With the use of specific BSPM descriptors and a reduced space for the myocardial geometry, we detail this framework on a real case of simultaneous biventricular pacing where both onsets were precisely localised. The obtained results (mean distance to the two ground truth pacing leads is 18.4mm) demonstrate the usefulness of this non-linear approach.
منابع مشابه
Non-invasive estimation of cardiac wall stress by using tissue doppler-echocardiography ultrasound images: People with coronary artery stenosis
In this study, a method for non-invasive estimation of stress on the heart wall in the diastole phase is presented using ultrasound echocardiography and tissue Doppler imaging. The aim of this study was to evaluate the stress on the heart wall as a pre-diagnosis to identify people with coronary artery stenosis. 29 patients with stenosis of more than 70%, 30 patients with stenosis of 50 to 7...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملInvestigation of linear and non-linear estimation methods in highly-skewed gold distribution
The purpose of this work is to compare the linear and non-linear kriging methods in the mineral resource estimation of the Qolqoleh gold deposit in Saqqez, NW Iran. Considering the fact that the gold distribution is positively skewed and has a significant difference with a normal curve, a geostatistical estimation is complicated in these cases. Linear kriging, as a resource estimation method, c...
متن کاملConvex vs non-convex estimators for regression and sparse estimation: the mean squared error properties of ARD and GLasso
We study a simple linear regression problem for grouped variables; we are interested in methods which jointly perform estimation and variable selection, that is, that automatically set to zero groups of variables in the regression vector. The Group Lasso (GLasso), a well known approach used to tackle this problem which is also a special case of Multiple Kernel Learning (MKL), boils down to solv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017